Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Psychol. neurosci. (Impr.) ; 4(1): 7-9, Jan.-June 2011. ilus
Article in English | LILACS | ID: lil-604529

ABSTRACT

This paper reports the results that are part of a series of experiments designed to evaluate aspects of the spatial resolution of the visual system of the opossum, Didelphis marsupialis aurita. This nocturnal marsupial presents a well-developed eye, displaying features that reflect specialization for operation at low levels of luminosity. The species was shown to be slightly myopic, a feature that may prove to be valuable because of the increased depth of field. Opossum visual acuity has been previously evaluated by means of determining the Contrast Sensitivity Function (CSF). The results indicate rather poor visual acuity compared with other nocturnal animals. In this paper, we describe the results obtained for the optical quality of the opossum's eye using a single-pass method. The results suggest that the opossum's optical system is capable of forming images that can be resolved when separated by an angular distance on the order of 6 minutes of arc.


Subject(s)
Animals , Contrast Sensitivity , Opossums , Visual Acuity
2.
Psychol. neurosci. (Impr.) ; 4(1): 19-27, Jan.-June 2011. ilus
Article in English | LILACS | ID: lil-604531

ABSTRACT

In the present investigation we mapped the primary visual area of the South American diurnal rodent, Dasyprocta aguti, by standardized electrophysiological mapping techniques. In particular, we performed a series of mapping experiments of the visual streak in the primary visual cortex. We found that the representation of the visual streak in V1 is greatly expanded, the nasal 10 degrees of the visual streak representation occupies ten times more cortical area than equivalent areas in the central or temporal representation. Comparison of these data with those on the density of ganglion cells in the retina at corresponding locations in the visual field reveal a significant mismatch between these two variables. The nasal representation is greatly expanded along the horizontal meridian in V1 as compared to the central and temporal regions whereas the density of ganglion cells decreases with progression along the visual streak from central region towards the nasal or temporal visual field. A review of the available data reveals that all lateral-eyed mammals exhibit a similar mismatch between the retinal and cortical representation of the visual field, and this mismatches is greater in those species with well defined visual streaks such as rabbit and agouti.


Subject(s)
Animals , Rabbits , Mammals , Retinal Ganglion Cells , Vision, Monocular , Visual Cortex , Visual Fields
3.
Psychol. neurosci. (Impr.) ; 4(1): 49-56, Jan.-June 2011. graf, tab
Article in English | LILACS | ID: lil-604533

ABSTRACT

The aim of the present study was to analyze the influence of enriched environment on the distribution of perineuronal nets (PNNs) using a stereogically based unbiased protocol and visual acuity in adult Swiss albino mice that underwent monocular deprivation during the critical period of postnatal development. Eight female Swiss albino mice were monocular deprived on postnatal day 10 and divided into two groups at weaning: standard environment (SE group, n = 4) and enriched environment (EE group, n = 4). After 3 months, all of the mice were subjected to grating visual acuity tests, sacrificed, and perfused with aldehyde fixative. The brains were removed and cut at 70 µm thickness in a vibratome and processed for lectin histochemical staining with Wisteria floribunda agglutinin (WFA). Architectonic limits of area 17 were conspicuously defined by WFA histochemical staining, and the optical fractionator stereological method was applied to estimate the total number of PNNs in the supragranular, granular, and infragranular layers. All groups were compared using Student's t-test at a 95 percent confidence level. Comparative analysis of the average PNN estimations revealed that the EE group had higher PNNs in the supragranular layer (2726.33 ± 405.416, mean ± standard deviation) compared with the SE group (1543.535 ± 260.686; Student's t-test, p = .0495). No differences were found in the other layers. Visual acuity was significantly lower in the SE group (0.55 cycles/degree) than in the EE group (1.06 cycles/degree). Our results suggest that the integrity of the specialized extracellular matrix PNNs of the supragranular layer may be essential for normal visual acuity development.


Subject(s)
Animals , Mice , Environment , Vision, Monocular , Visual Acuity , Visual Cortex
SELECTION OF CITATIONS
SEARCH DETAIL